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A B S T R A C T   

A novel framework for acoustic detection and species identification is proposed to aid passive acoustic moni
toring studies on the endangered Indian Ocean humpback dolphin (Sousa plumbea) in South African waters. 
Convolutional Neural Networks (CNNs) were used for both detection and identification of dolphin vocalisations 
tasks, and performance was evaluated using custom and pre-trained architectures (transfer learning). In total, 
723 min of acoustic data were annotated for the presence of whistles, burst pulses and echolocation clicks 
produced by Delphinus delphis (~45.6%), Tursiops aduncus (~39%), Sousa plumbea (~14.4%), Orcinus orca 
(~1%). The best performing models for detecting dolphin presence and species identification used segments 
(spectral windows) of two second lengths and were trained using images with 70 and 90 dpi, respectively. The 
best detection model was built using a customised architecture and achieved an accuracy of 84.4% for all dolphin 
vocalisations on the test set, and 89.5% for vocalisations with a high signal to noise ratio. The best identification 
model was also built using the customised architecture and correctly identified S. plumbea (96.9%), T. aduncus 
(100%), and D. delphis (78%) encounters in the testing dataset. The developed framework was designed based on 
the knowledge of complex dolphin sounds and it may assists in finding suitable CNN hyper-parameters for other 
species or populations. Our study contributes towards the development of an open-source tool to assist long-term 
studies of endangered species, living in highly diverse habitats, using passive acoustic monitoring.   

1. Introduction 

Accurate remote sensing tools used to investigate wildlife pop
ulations are critical for long-term monitoring and effective conservation 
actions, especially for endangered species. Passive acoustic monitoring 
(PAM) has been extensively used to investigate endangered dolphin 
populations (Dong et al., 2017; Jaramillo-Legorreta et al., 2017; Munger 
et al., 2016), and machine learning techniques have been employed to 
improve the accuracy and speed of acoustic detection (Bergler et al., 
2022; Caruso et al., 2020; White et al., 2022; Ziegenhorn et al., 2022). 
Despite the widespread use of PAM, relatively few tools are available 
that detect and identify these sounds in archived recordings (Bergler 

et al., 2022; Gillespie et al., 2009; Sugai et al., 2019). Additionally, the 
lack of annotated sounds in openly available datasets precludes further 
development of complex machine learning models for dolphin sounds 
detection and species identification as a large amount of data are needed 
(Jordan and Mitchell, 2015). Conservation actions and population 
monitoring using PAM are thereby limited for some species, particularly 
those living in noisy habitats where sympatric species emit similar 
acoustic signals. Effective classifiers are required to identify species of 
interest in highly complex ecosystems (Ziegenhorn et al., 2022). 

The development of effective tools using PAM techniques, designed 
for the monitoring and conservation of the endangered Indian Ocean 
humpback dolphin (Sousa plumbea) in South Africa, was the catalyst for 
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this study. Toothed whales rely on acoustic communication for biolog
ical success, using a variety of functionally specific signals, such as tonal 
whistles or broadband pulse bursts in social interactions, as well as 
echolocation clicks for navigation and feeding. Humpback dolphins in 
South Africa inhabit shallow rocky and sandy-bottom shore zones of a 
very heterogeneous habitat along the southwesterly portion of this 
species' distribution (Best and Folkens, 2007), which could negatively 
affect the detectability of specific sounds due to the noisy environment 
(Shabangu et al., 2022). Additionally, the use of coastal habitats in
creases their interaction with human activities (Plön et al., 2015), such 
as boat traffic (Karczmarski et al., 1998), which not only contributes to 
the soundscape as noise (Schoeman et al., 2022), but can also mask the 
sounds produced by dolphins and interfere on both natural communi
cation (Fouda et al., 2018; Jensen et al., 2009) and monitoring of wild 
populations. Despite the potential significance of passive acoustics in 
monitoring humpback dolphins (Sousa spp.) (Bopardikar et al., 2018; 
Dong et al., 2017; Yang et al., 2020), its application in long-term re
cordings is still constrained in South African waters, as there are no 
available automated classifiers to differentiate their sounds from other 
dolphin species that are present in the area. Humpback dolphins from 
the southern Indian Ocean have an overlapping distribution with at least 
three other whistling dolphin species, most commonly, the Indo-Pacific 
bottlenose dolphin (Tursiops aduncus), the common dolphin (Delphinus 
delphis), and the killer whale (Orcinus orca) (Peddemors, 1999). 

The highly diverse vocal repertoire of delphinids (Odontoceti: Del
phinidae) reflects the complexity of their cognitive abilities due to a 
strong social component (Fox et al., 2017). Despite this, their vocal 
production structures share similar morphological adaptations (Mead, 
1975). However, slight variations in size (Jensen et al., 2018) and head 
shape of some species (e.g., S. plumbea) (Frainer et al., 2021; Song et al., 
2022) may result in convergence on similar sound production capabil
ities with other species (e.g., T. aduncus and D. delphis) and potentially 
affect the accuracy of identification tasks (Yang et al., 2020). Humpback 
dolphins exhibit adaptations on the left side of their epicranial complex 
that may allow them to produce more directional and higher frequency 
communication sounds compared to bottlenose dolphins (Tursiops spp.) 
(Frainer et al., 2019). Such sounds, for example whistles, overlap in 
spectral frequency with those produced by T. aduncus and D. delphis 
(Erbs et al., 2017; Fearey et al., 2019; Gridley et al., 2014). Although 
most of the studies on this topic have investigated the differences across 
species using specific calls such as whistles (Erbs et al., 2017; Oswald 
et al., 2008; Oswald et al., 2021) or clicks (Buchanan et al., 2021; de 
Freitas et al., 2015; Luo et al., 2019; Temple et al., 2016; Yang et al., 
2020), few studies have integrated multiple sound types as input for 
species classification tasks (Rankin et al., 2017). 

In this study, we assessed the applicability of Convolutional Neural 
Networks (CNNs) for dolphin monitoring in long-term recordings using 
their complete vocal repertoire along with a model prediction and post- 
processing approach for automated taxonomic identification. Although 
prior studies have shown the effectiveness of CNNs in detecting and 
identifying whale (Allen et al., 2021) and dolphin sounds (Buchanan 
et al., 2021; Duan et al., 2022; Erbs et al., 2023; Luo et al., 2019; Nur 
Korkmaz et al., 2023), a multi-class classifier that encompasses all the 
dolphin species occurring in South African waters has yet to be devel
oped. The proposed framework designed here combining biological 
knowledge on sound production in dolphins, and innovative machine 
learning tools, may enhance the use of PAM for target species in highly 
diverse areas. Improving remote sensing techniques to monitor the 
population dynamics of the endangered humpback dolphin in South 
Africa via their vocalisations (Longden et al., 2020; Wang et al., 2020) 
would be a critical stride towards the development of an automated and 
long-term monitoring system and effective conservation management 
strategies. This represents the first tool of this nature for South Africa 
and will be available for ecologists, management teams, and researchers. 

2. Material and methods 

2.1. Data collection 

To build the training library, boat-based focal follow recordings were 
used to record the vocalisations of four whistling coastal dolphin species 
that inhabit South African waters (Fig. 1). The recordings were made 
using a SoundTrap 300HF (flat frequency response of 20 Hz - 150 kHz ±
3 dB; Ocean Instruments Inc., New Zealand), or HTI-96-MIN hydro
phones (flat frequency response of 2 Hz – 30 kHz ± 1 dB; High Tech Inc., 
U.S.) attached to a TASCAM DR 680 recorder (TASCAM, U.S.) (Sup
porting Information A) and were stored in .wav files. Hydrophones were 
set approximately four metres deep during dolphin encounters, with 
signals digitised at 96 kHz sample rate or higher in continuous re
cordings. Dedicated visual surveys were performed during all boat- 
based recordings to ensure that no other species were present in the 
area, i.e., data from mixed-species groups were not included in the 
analysis. Additionally, recordings made through moored instruments in 
Mossel Bay were obtained between March 19th and April 4th of 2021, 
using a SoundTrap 300HF sampling at 96 kHz at five meters depth 
(Fig. 1). The presence of S. plumbea and T. aduncus in the vicinity of the 
devices was confirmed by land-based observations from the harbour 
wall, located approximately 100 m away from the mooring. The close 
proximity of the dolphins to the recorder, combined with the simulta
neous capture of strong signals by the devices during visual observa
tions, confirmed the correlation between sound and species 
identification. Two confirmed D. delphis encounters between the 15th 
and 16th of May 2021, in False Bay, were recorded using a SoundTrap 
300HF hydrophone attached four metres deep to a free-drifting buoy. 
Furthermore, to validate the single-species encounters, visual observa
tions were conducted from a boat positioned roughly 400 m away from 
the drifting buoy. A moored SoundTrap 300HF sampling at 576 kHz at 
~10 m depth was deployed between the 31st of January and the 2nd of 
February 2021, in Fish Hoek, Cape Town to record O. orca sounds during 
four days of a confirmed sighting in the area (i.e., reports from whale 
watching networks and personal observation) (Fig. 1). In this case, a 
male O. orca was sighted during consecutive days close to the moored 
hydrophone, through visual observations from a boat. The unique 
complex calls from O. orca (Miller and Bain, 2000) confirmed the species 
identification of the vocalisations. The moorings used in this study were 
attached to a rope that was suspended, along the water column, by a 
subsurface buoy. The moored hydrophones were then attached 
approximately two meters from the bottom, and all the moored and free- 
drifting recordings were made in continuous recordings (Supporting 
Information A). 

2.2. Training dataset and testing dataset 

Dolphin whistles, burst pulses, and echolocation click trains were 
inspected aurally and visually, using spectrograms (FFT length = 1300; 
hop size = 650; Hann window; with smoothing applied), and manually 
annotated using Raven Pro 1.6 (Cornell Lab of Ornithology, 2023). The 
labelled dolphin vocalisations varied from short whistles and burst 
pulses to long segments with more than one vocally active animal, 
including big groups (>100 animals, e.g., D. delphis and T. aduncus) 
(Fig. 2). Soundscapes, comprised of non-dolphin biological (e.g., fish, 
snapping shrimp, reef), geophonic (e.g., rough seas, rain), and anthropic 
sounds (e.g., chain noise, boats) were also manually annotated (Dufourq 
et al., 2021; Stowell et al., 2019) to represent the naturally occurring 
soundscape in the absence of dolphins. The start and end of each 
annotation were recorded, as well as the duration of each segment. For 
the testing dataset, vocalisations were categorised according to the 
amount of noise masking, interpolated from the signal-to-noise ratio 
graded from one (i.e., masked/weak signal) to three (i.e., strong and 
clear signal). The visually monitored recordings from moored hydro
phones in Mossel Bay were used as ‘unseen data’ to test the 

G. Frainer et al.                                                                                                                                                                                                                                 



Ecological Informatics 78 (2023) 102291

3

generalisability of our tool. Similarly, D. delphis recordings from a free- 
drifting buoy, as well as O. orca sounds from the moored hydrophone, 
were only used to test the species identification model (Supporting In
formation A). 

2.3. Pre-processing 

To ensure consistent sampling rates, audio recordings with a sam
pling rate above 96 kHz were downsampled to 96 kHz. To create the 
training set, a sliding window approach was used to extract segments of 
sound with equal length (user defined hyper-parameter) from the an
notated events (Dufourq et al., 2021), in which segments were sampled 
in series based on their start and end times. The segment start times were 
interspaced one second apart from each other to sample dolphin 
vocalisations in different contexts. We compared the accuracy of the 
models by varying the windows sizes (2, 3, 5, and 7 s) to determine the 
best parameter. These window sizes refer to the shortest segment 
possible (i.e., two seconds) and the longest segment that can cover at 
least the longest dolphin vocalization (e.g., O. orca complex calls). All 
segments were augmented by randomly mixing dolphin sounds with 
target soundscapes from where the classifier would be applied; in our 
case, Mossel Bay. The new segments contained a proportion of both 
dolphin (90%) and soundscape (10%) sounds; to elucidate a potential 
detection of species in the target area. The amount of augmentation for 
species was scaled up relative to the number of segments generated for 
the species with the largest amount of data, which was only duplicated 
due to the large number of clips generated (i.e., D. delphis, with 20,319 
clips generated and 40,638 spectrograms created). We also balanced 
each species dataset per encounter to ensure equal distribution for the 

sounds produced in different contexts (see Discussion section). The class 
distribution was also balanced after the augmentation process, based on 
the class with the smallest dataset to ensure balanced datasets. 

To test the efficacy of our models, we created several segments by 
using the same sliding window approach. Namely, we used the same 
window size that was used in training, and thus multiple segments were 
created across the entire testing file by moving the window by one 
second in the moored recording. We converted each of these testing 
segments into spectrograms (FFT length = 1024; hop size = 128; Hann 
window) which were used as input for subsequent model prediction. All 
generated spectrogram images were created as 5 × 5 in. but varied in 
their dpi configuration, ranging from 200 × 200 (40 dpi) to 500 × 500 
(100 dpi) samples. The number of images used per class was constrained 
by our computational resources, and we used the maximum number of 
images possible in each case. We attempted a number of experiments 
and varied the number of classes. The largest dataset built comprised 
80,000 images when combining three seconds window size and 40 dpi 
for the customised architecture (see Convolutional neural networks sec
tion), and the smallest one comprised 3900 images combining two 
seconds window size and 90 dpi for the transfer learning approach 
(Table 1). 

2.4. Convolutional neural networks 

Two CNN models were implemented to detect and identify dolphin 
sounds (Fig. 3). The first model (CNN1) was a binary classifier that was 
trained to detect the presence or absence of dolphin sounds. The second 
model (CNN2) was a multi-class classifier that was trained to differen
tiate between different species of dolphins. Two architectures were 

Fig. 1. Locations of the boat-based recordings 
of the common dolphin (Delphinus delphis), the 
killer whale (Orcinus orca), the Indo-Pacific 
bottlenose dolphin (Tursiops aduncus), and the 
Indian Ocean humpback dolphin (Sousa plum
bea) used to build the training dataset. Re
cordings from moored (circles) and drifting 
buoy-attached (triangle) hydrophones used as 
the testing dataset are represented in red. (For 
interpretation of the references to colour in this 
figure legend, the reader is referred to the web 
version of this article.)   
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compared, namely, a customised CNN (based on preliminary hyper- 
parameter tuning experiments), and a pre-trained ResNet152V2 archi
tecture (He et al., 2016) that demonstrated good performance in animal 
sound classification tasks (Dufourq et al., 2022). The customised models 
were composed of three convolutional layers (32 filters, kernel size of 4 
× 4, ReLU activation). Each convolutional layer was followed by 

dropout (rate of 0.4) and a max pooling (kernel size of 4 × 4) layer. This 
was followed by a fully connected layer with 64 ReLU units, dropout 
(rate of 0.4), and a softmax function (two units in the case of CNN1, and 
three or four units in the case of CNN2 depending on the number of 
species). The models were trained for 50 epochs using the Adam opti
mizer (Kingma and Ba, 2014), with a learning rate of 0.001 and a batch 

Fig. 2. Examples of spectrograms showing calls of all four species studied here built with distinct window sizes (two-, three-, five- and seven-seconds length). Sample 
rate 96 kHz (Nyquist frequency 48 kHz), Hann window size of 1024 samples, and a hop size of 128 samples (75% overlap). 

Fig. 3. The general pipeline of the algorithm used to build (Training) and test (Testing) the models.  
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size of 32. The most suitable architecture was chosen based on the best 
validation accuracy (proportion of all correct predictions) and precision 
(number of true positives divided by true positives and false positives) 
obtained during training. The model training and prediction procedures 
were executed on Microsoft Azure using instance NV12s v3 with 12 
vCPUs and 112 GB RAM. The CNNs were implemented using Tensor
Flow (Abadi et al., 2016) and Python 3. The Ubuntu 20.04 operating 
system was used and obtained via the Ubuntu 20.04 Data Science Virtual 
Machine on Microsoft Azure. The algorithm scripts are available in 
Supporting Information B. 

2.5. Inference and post-processing 

CNN1 was applied to the unseen data to obtain softmax values 
indicating the likelihood of dolphin vocalisations within each testing 
segment. A post-processing technique was devised to group segments 
that were predicted as present and occurred within a 900 s timeframe of 
each other, and for which the model displayed a high degree of confi
dence (> 70%). The outcome of CNN1 determined the start and end 
times for each acoustic encounter (AE), which entails isolated calls 
occurring within at least 15 min of each other. The time between AE was 
determined based on ad hoc experimentation and can be easily adjusted 
during the inference step. Each AE was then assessed using CNN2 to 
assign a single species identification for all detected segments containing 
dolphin vocalisations. The taxonomic identification for an AE was 
determined by first using CNN2 to determine the species indications on 
each detected segment within the AE, and then the majority of taxo
nomic identification was assigned to the entire AE. The number of de
tections and the proportion of detections per species, as well as the start 
and end times (based on the files' name), and duration of the AE, are 
given in the output (see output example in Supporting Information B). 

2.6. Model evaluation 

The testing dataset was analysed by one experienced observer (GF) 
whereby dolphin echolocation clicks, burst pulses, and whistles were 
also manually annotated using Raven Pro 1.6 (Cornell Lab of Ornithol
ogy, 2023). A confusion matrix was then generated to compare the 
detected AEs by the CNN1 models against the ground-truth data, based 
on the time of correct/incorrect assignment (see Fig. 4). In this way, 
each second of the 24 h testing dataset was categorised as True Negative 
(TN), True Positive (TP), False Negative (FN), or False Positive (FP). The 
evaluation was performed for all dolphin sounds and, secondly, for all 
dolphins sounds with SNR higher than 1, which are considered useful for 
ecological studies (Gridley et al., 2015; Palmer et al., 2019). The models 
were assessed based on the accuracy, precision, sensitivity (recall), 
specificity, and F1 score: 

Accuracy = (TP+TN)/(TP+ TN +FP+FN)

Precision = TP/(TP+FP)

Sensitivity = TP/(FN +TP)

Specificity = TN/(TN +FP)

F1 score = 2*(Precision*Sensitivity)/(Precision+ Sensitivity)

The performance of the species identification model (CNN2) was 
tested using moored or drifting recordings (see Data collection section) 
with verified species identification, and the accuracy for each species 
was reported. 

To create the dataset, audio segments were extracted and augmented 
using the Microsoft Azure instance E96ias v4 with 96 vCPUs and 672 GB 
RAM. We chose a high performance machine aiming to execute the al
gorithm with as much data as possible instead of sub-sampling the 
dataset. The software was implemented using various Python 3 Ta
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packages, including Librosa version 0.8.1 (McFee et al., 2015) and SciPy 
(Virtanen et al., 2020). 

3. Results 

The training dataset was based on 43 boat-based encounters 
(D. delphis, n = 8 encounters; O. orca, n = 4 encounters; S. plumbea, n =
19 encounters; T. aduncus, n = 12 encounters) and soundscape re
cordings from moored hydrophones (Fig. 1). Annotated sounds used to 
create the training dataset totalled 723 min of audio data for which the 
distribution was D. delphis (45.6%), O. orca (0.96%), S. plumbea 
(14.38%), T. aduncus (39%), as well as 772 min of the soundscape. The 
training library size varied based on the computing limitations (Table 1). 
The testing dataset for the detection model comprised 24 h of a day and 
contained 18 AE varying from less than one second to ~59 min. The 
testing dataset for the species identification model was based on 10 to 
30 min of unseen data for each of the species studied here (Supple
mentary Information I). The varying length of the testing dataset was 
due to the number of vocalisations detected in the unseen data by the 
CNN1, which is potentially affected by the setup of the hydrophone 
deployment (moored or drifting buoy) and the behavioural biology of 
each species (see Discussion section). Except for D. delphis, in which we 
have mostly used 10 min of testing data due to the higher number of 
detections in those recordings, all other testing files listed in Supple
mentary Information A per species were used to evaluate the identifi
cation models. The best model weights for CNN1 (detection) and CNN2 
(species identification) were obtained using two-second segments 
(windows) with images generated at 70 and 90 dpi, respectively (Fig. 5). 

The customised CNN architecture achieved the highest accuracy for 
both models, outperforming the pre-trained ResNet152V2 model with 
faster predictions. The best CNN1 model exhibited an 84.4% accuracy 
(Precision = 87.6%, Sensitivity = 56.7%, Specificity =96.4%) in 
defining AEs based on all dolphin sounds in the test set and 89.5% ac
curacy (Precision = 67.9%, Sensitivity = 76.3%, Specificity = 92.3%) 
for sounds with an SNR higher than 1. On the other hand, the best 

ResNet152V2 model (using 90 dpi and two seconds window) achieved 
83.9% accuracy (Precision = 56.1%, Sensitivity = 37.2%, Specificity =
93.8%) in a similar condition (i.e., detecting sounds with SNR > 1). 
Increasing the dpi in the training images improved the model's precision, 
but decreased its sensitivity, resulting in lower accuracy (Table 1). The 
best CNN1 model showed lower precision than the one built using 90 dpi 
but higher sensitivity (or recall), thus reflecting higher F1 score 
(Table 1). Notably, exploratory ad hoc tests investigating the duration of 
the segments (i.e., window size) used to build the dataset and the res
olution of the training images were crucial in determining the best 
detection model. 

The species identification model (CNN2) only showed high accuracy 
when excluding one class (i.e., O. orca). The two best-performing models 
were obtained when using segments of two seconds and 90 dpi. 
Furthermore, these two models achieved the best testing results when 
trained on two (S. plumbea and T. aduncus) and three (S. plumbea, 
T. aduncus and D. delphis) classes (Fig. 6, Table 2). The only model 
showing >50% accuracy for O. orca sound classification was the one 
using the transfer learning approach, although it did not perform well 
when identifying S. plumbea sounds with only 9% accuracy. The highest 
accuracy for S. plumbea sound identification in PAM was achieved using 
a four-class model (including O. orca), but this model performed poorly 
in distinguishing O. orca sounds from other species (Fig. 6). The com
parison of two two-class models (S. plumbea x T. aduncus) with distinct 
training library sizes (8 k and 12 k) demonstrated higher accuracy for 
the one built using a smaller training dataset. Inference using transfer 
learning was nearly twice as long as the custom CNN architectures 
(Table 1). 

4. Discussion 

The algorithm developed in this study assisted in finding optimal 
parameters to construct a suitable training dataset to be used as input to 
CNNs for classification tasks on complex dolphin sounds. We found that 
using shorter window sizes generated more accurate models for both 
tasks (Tables 1 and 2). With a constant dpi, we investigated the impact of 
window size on the classification of dolphin calls to determine if it was 
necessary to encompass the longest annotated call (e.g., O. orca whistle) 
as proposed in previous studies (Dufourq et al., 2021). The comparison 
of two two-class (i.e., S. plumbea x T. aduncus) models both built using 
customised architecture and 40 dpi, but with different window sizes (3 s 
and 7 s, Tables 1 and 2), demonstrated better performance for models 
built using smaller window size, specifically two or three seconds in 
length (Table 1). The best model was built using a two-second window 
length. Smaller window size yields a more nuanced representation of 
dolphin sounds, allowing for the detection of rapid frequency modula
tion patterns that may not be discernible in longer windows (see Fig. 2). 
Additionally, we demonstrated that fine-tuning the dpi parameter had a 
significant impact on both models' accuracy as the optimal dpi differed 

Fig. 4. Detection model evaluation based on acoustic encounters (AEs). The confusion matrix was built based on resultant AEs assigned by the model compared to 
manually annotated data (human detector/ground truth). 

Fig. 5. Indian Ocean humpback dolphin (Sousa plumbea) vocalisations captured 
in a single two second window length segment and converted to a linear 
spectrogram in images with distinct dots per inch (dpi). Sample rate 96 kHz 
(Nyquist frequency 48 kHz), Hann window size of 1024 samples, and a hop size 
of 128 samples (75% overlap). 
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between the best CNN1 (dpi = 70) and CNN2 (dpi = 90) models, and 
higher or lower dpi settings were not effective for both tasks. Further
more, our results in Table 2 reveal that the differences in model accu
racy, due to window size and dpi, may have accounted for variations in 
the number of detections considered for species identification in the 
different CNN2 models. Although presenting higher precision compared 
to the best CNN1 model described before, the model built using cus
tomised architecture, two seconds window, and 90 dpi showed lower 
sensitivity, thus potentially depending on strong signals from dolphin 
vocalisations (SNR > 1) to be detected and then classified at the species 
level. 

The best CNN2 model successfully identified S. plumbea, T. aduncus 
and D. delphis sounds in a three-class classification model in the unseen 
data (Table 2). However, it was unable to perform well when including 

O. orca that, interestingly, produces distinct echolocation click train 
patterns and complex calls including biphonic whistles with multiple 
harmonics (Miller and Bain, 2000), which are quite distinguishable from 
other species with mostly single contour whistle repertoires (Erbs et al., 
2017). The inefficiency of the four-class CNN2 model can likely be 
attributed to the small sample size for O. orca, representing only ~0.9% 
of all annotated dolphin sounds which was potentially limited by a small 
diversity of calls and behavioural contexts (Oswald et al., 2008; Quick 
and Janik, 2008). Nevertheless, the three-class CNN2 model represents a 
significant advance in dolphin sound classification tasks for taxonomic 
identification, especially for S. plumbea monitoring in South African 
waters. It is worth stressing that O. orca is not as common as T. aduncus 
or D. delphis (Best et al., 2010; Melly et al., 2018). They also produce 
visually distinguishable sounds from the other dolphins investigated, 

Fig. 6. Comparison of confusion matrices for a four-class (left) and a three-class (right) species identification model applied to the testing, unseen dataset (Sup
plementary Information A). Both models were trained using a customised architecture, two seconds window size to extract the annotated sounds from boat-based 
recordings, and the resulting spectrograms (images) used to train the models maintained a resolution of 90 dpi. 

Table 2 
Species identification models performance. n, the number of segments in the testing file detected by the CNN1 model (see Material and Methods section) that was used to 
assign species identification. Each row represents a combination of model architecture, the configurations used to build the image dataset for the training step such as 
window size and dpi, and the classes (i.e., species) used to build the model. Differences on accuracy related to library size was evaluated between two two-class models 
(S. plumbea x T. aduncus) using customised architecture, two seconds window and 70 dpi. *Four ten-minutes files were used for this testing. **Total dataset size of 12 k 
images. ***Total dataset size of 8 k images.  

Architecture Window size (s) dpi Accuracy (%) 

S. plumbea T. aduncus D. delphis O. orca 

Customised architecture 2 70 63.9 (n = 183)** 67.8 (n = 171)** – – 
43.3 (n = 127)*** 97.0 (n = 171)*** – – 
78.7 (n = 127) 97.0 (n = 171) 43.9 (n = 599) – 
53.8 (n = 130) 95.8 (n = 192) 60.8 (n = 2396)* 0 (n = 897) 

80 72.9 (n = 48) 88.6 (n = 106) 75.7 (n = 598) 0.3 (n = 595) 
90 87.3 (n = 166) 80.0 (n = 10) – – 

96.9 (n = 166) 100.0 (n = 10) 77.9 (n = 599) – 
100.0 (n = 33) 50.0 (n = 4) 71.7 (n = 598) 0.3 (n = 309) 

100 60.7 (n = 51) 94.0 (n = 101) 83.5 (n = 492) 4.5 (n = 22) 
3 40 50.4 (n = 121) 99.2 (n = 136) – – 

4.1 (n = 121) 2.2 (n = 136) 9.0 (n = 598) – 
15.7 (n = 121) 2.2 (n = 136) 0.5 (n = 598) 1.2 (n = 894) 

5 50 0.0 (n = 96) 100.0 (n = 9) – – 
22.2 (n = 27) 100.0 (n = 9) 23.1 (n = 596) 0.0 (n = 592) 

7 40 0.0 (n = 44) 100.0 (n = 4) 76.4 (n = 594) 0.4 (n = 227) 
36.3 (n = 44) 75.0 (n = 4) – – 

Transfer learning 2 90 1.2 (n = 166) 100.0 (n = 10) – – 
10.2 (n = 166) 80.0 (n = 10) 76.1 (n = 599) – 
9.0 (n = 166) 100.0 (n = 10) 79.1 (n = 599) 51.1 (n = 432) 

3 40 0.0 (n = 284) 36.5 (n = 41) 9.5 (n = 598) 1.9 (n = 827) 
7 40 0.0 (n = 292) 96.5 (n = 29) 83.3 (n = 588) 4.6 (n = 434)  
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allowing them to be manually checked in a post-hoc analysis of results. 
Future investigation may address transfer learning using the same 
optimal window size and dpi found for the best CNN2 model as this 
approach, in our case, performed better than any other model for O. orca 
sounds (Table 2). 

The approach proposed in this study presents a promising framework 
for future assessments on dolphin detection and identification using 
PAM recordings as the algorithm was based on the biology of dolphin 
sounds. The nature of vocal production varies considerably among 
dolphins as some species are more actively vocal than others, potentially 
driven by group size dynamics (Oswald et al., 2008; Quick and Janik, 
2008) (Fig. 2), resulting in a different number of sound detections 
extracted from the training dataset for each species, despite a similar 
number of boat-based encounters (see Material and Methods section, 
Supporting Information A). We balanced the dataset to account for the 
imbalance of the total number of detections per species, to match the 
largest dataset for a class (i.e., D. delphis). Also, dolphin vocal production 
is dependent on its behavioural context (Quick and Janik, 2008), and 
thus we also balanced each species dataset per encounter to ensure equal 
weights for the sounds produced in different contexts. Indian Ocean 
humpback dolphins, for example, presented long periods of echoloca
tion click trains while on other occasions only a few whistles (personal 
observation on the training dataset). This approach ensured a better 
representation of whistles in the dataset for this species. 

The use of AEs to define a time period of dolphin detections not only 
assisted in species identification by handling potential false positives but 
also defined periods of dolphin activity near moored hydrophones that 
may be useful for future ecological studies. Here, we built a framework 
to test the efficiency of the detection model (i.e., CNN1) based on AEs 
(Fig. 4) as the identification model (i.e., CNN2) was dependent on the 
sounds captured within each AE. In other words, we assessed the taxo
nomic identification of dolphin sounds based on the proportion of 
classified segments for each species in a certain time period (i.e., AE). 
We used this approach as, for certain species, the classification tasks 
based on one call may not be recommended (Rankin et al., 2017) due to 
the time-frequency characteristics of vocalisations overlapping with 
other species in the area, thus contributing to decreased accuracy in 
classification models (Yang et al., 2020). Killer whales are known to be 
able to mimic other dolphin species (Musser et al., 2014) and other 
marine mammal species (Foote et al., 2006). As such, it is necessary to 
consider the context in which those sounds were produced, instead of 
identifying single clicks, burst pulses, or whistles. Although our algo
rithm does not identify mixed species groups, it might assist future 
dedicated research on this complex task. One can still verify the pro
portion of classified detections for each AE that is given in the output, 
and even experiment with more conservative times between AE thus 
assigning species identification based on more individualised groups of 
vocalisations. In this context, it is important to emphasize that a draw
back of employing CNNs, in the manner our algorithm was designed is a 
limitation of identifying only one species per second. Consequently, the 
model is unable to distinguish between detections where two species are 
vocalizing simultaneously. However, this topic needs to be further 
investigated in detail. 

Our study showcases the exceptional performance of CNNs in accu
rately classifying complex biological patterns such as click trains across 
species. Specifically, the testing data for S. plumbea was composed of a 
few whistles and a long series of click trains, for which the model 
correctly assigned 96.9% of the detected dolphin sounds (n = 166, 
Table 2). In this way, most of the click detections were correctly assigned 
at the species level. It is worth noting that the sample rate used here (i.e., 
96 kHz) did not capture all of the dolphin click energy that can reach up 
to 150 kHz (Au, 2000). However, the decision to use a sample rate of 96 
kHz was made as this is a widely used sampling frequency that captures 
the entire frequency range of most dolphin whistles (Au, 2000) while 
maximizing the deployment time for moored hydrophones, compared to 
full bandwidth recordings. 

5. Conclusion 

This study aimed to develop a sound classifier to acoustically 
monitor the critically endangered humpback dolphin in South African 
waters. As this species coexists with three other whistling dolphin spe
cies in the study region (Findlay et al., 1992), a species identification 
model was deemed essential. Our findings are encouraging and can 
greatly assist conservation efforts by providing a tool for ecologists and 
researchers. The algorithm holds significant promise as a tool to be 
further developed for the monitoring and research on Indian Ocean 
humpback dolphin acoustics in long-term recordings. The spatiotem
poral definition of AEs to investigate Indian Ocean humpback dolphins' 
activity may assist studies on habitat use (Caruso et al., 2020) and those 
using individually distinctive signature whistles (Deecke and Janik, 
2006; Janik et al., 2013) as input to mark-recapture approaches for 
population dynamics studies (Longden et al., 2020). The proposed 
framework can be adapted to other similar tasks involving PAM and 
species identification tasks, especially on cetaceans. The automated 
adjustment of main parameters such as sample rate, dpi, and window 
size enhances the adaptability of the application. The output of the 
application may define the time of dolphin activity near a moored hy
drophone, with a customisable time period between AEs that can be 
tailored to other locations and studies. Dolphins mostly live in a fission- 
fusion society, so the AE definition (see Material and Methods section) 
can be adapted for other species to assist with social-network studies 
based on group composition within a time frame (Whitehead, 2008). 

We demonstrated the power of CNNs on the taxonomic identification 
of dolphin sounds. The open-source application presented here advances 
the research in improving the detection and identification of dolphin 
vocalisations in audio recordings and will be valuable for monitoring the 
endangered Indian Ocean humpback dolphin in South African waters. 
The effective performance of the algorithm provided here encourages 
future research on using customisable CNNs and algorithms for the 
identification of complex signals. The proposed framework was 
designed to easily fine-tune classification tasks of biological sounds and 
may increase the use of CNNs through a near-friendly, Linux operating 
system interface. Future research may address further improvement on 
the detectability of dolphin vocalisations, enhancing identification ac
curacy, and categorising these sounds to potentially assign specific 
behavioural activity for each AE. Moreover, further research should be 
conducted to reduce processing time and facilitate real-time monitoring, 
thereby expanding the potential applications of this algorithm. The 
utilization of a high-performing application for dolphin identification in 
low-cost devices with “low” sample rates (i.e., 96 kHz) could prove 
invaluable for PAM in low-income countries (Lamont et al., 2022), 
particularly for optimising battery and deployment time. The develop
ment of effective remote sensing tools to monitor endangered dolphin 
species with optimised sampling rates may help expand hydrophone 
networks and cover larger areas in longer periods. There are fewer than 
500 humpback dolphins remaining in South African waters (Vermeulen 
et al., 2018) and the population is under severe threat from anthropo
genic (Plön et al., 2015) and natural impacts (Frainer et al., 2022). The 
proposed framework could be further refined by incorporating a new 
class into CNN2 to identify potential threats to the Indian Ocean 
humpback dolphin such as boat traffic, while assisting population dy
namics and habitat use studies on this endangered species. The long- 
term monitoring of this species using acoustics may ensure a repli
cable way to evaluate changes in population dynamics in historic sites of 
occurrence. 
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Data availability 

All code for training and testing the neural networks is available at 
https://github.com/Gui-Frainer/CetusID. A subset of the acoustic re
cordings used for the demonstration notebook, including labels for the 
acoustic data used for training, as well as the testing dataset with 
confirmed species identification has been stored in Zenodo and can be 
accessed at DOI: https://doi.org/10.5281/zenodo.8074949. 
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